On the evaluation at (j, j2) of the Tutte polynomial of a ternary matroid

نویسندگان

  • Emeric Gioan
  • Michel Las Vergnas
چکیده

F. Jaeger has shown that up to a ± sign the evaluation at ( j, j2) of the Tutte polynomial of a ternary matroid can be expressed in terms of the dimension of the bicycle space of a representation over G F(3). We give a short algebraic proof of this result, which moreover yields the exact value of ±, a problem left open in Jaeger’s paper. It follows that the computation of t( j, j2) is of polynomial complexity for a ternary matroid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte Polynomials and Bicycle Dimension of Ternary Matroids

Let M be a ternary matroid, t(M,x,y) be its Tutte polynomial and d(M) be the dimension of the bicycle space of any representation of M over GF(3) . We show that, for j = e2'"/3, the modulus of the complex number t(M,j,j2) is equal to (v/3)'/(M) . The proof relies on the study of the weight enumerator Wv\y) of the cycle space £* of a representation of M over GF(3) evaluated at y = j . The main t...

متن کامل

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On the evaluation at (−ι, ι) of the Tutte polynomial of a binary matroid

Vertigan has shown that if M is a binary matroid, then |TM(−ι, ι)|, the modulus of the Tutte polynomial of M as evaluated in (−ι, ι), can be expressed in terms of the bicycle dimension of M . In this paper, we describe how the argument of the complex number TM(−ι, ι) depends on a certain Z/4Z-valued quadratic form that is canonically associated with M . We show how to evaluate TM(−ι, ι) in poly...

متن کامل

Splitting Formulas for Tutte Polynomials

We present two splitting formulas for calculating the Tutte polynomial of a matroid. The rst one is for a generalized parallel connection across a 3-point line of two matroids and the second one is applicable to a 3-sum of two matroids. An important tool used is the bipointed Tutte polynomial of a matroid, an extension of the pointed Tutte polynomial introduced by Thomas Brylawski in Bry71].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006